初中数学教案优秀20篇
作为一名专为他人授业解惑的人民教师,通常会被要求编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。来参考自己需要的教案吧!
数学初中教案 1
教学目标
1.知识与技能: 了解命题、公理、定理的含义;理解证明的必要性。
2.过程与方法:结合实例让学生意识到证明的必要性,培养学生说理有据,有条 理地表达自己想法的良好意识。
3.情感、态度与价值观:初步感受公理化方法对数学发展和人类文明的价值。
重点与难点
1.重点:知道什么是公理,什么是定理
2.难点:理解证明的必要性。
教学过程
一、复习引入
教师讲解:前一节课 我们讲过,要证明一个命题是假命题,只要举 出 一个反例就行了。这节课,我们将探究怎样证明一个命题是真命题。
二、探究新知
(一)公理教师讲解:数学中有些命题的正确性是人们在 长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理。
我们已经知道下列命题是真命题:
一条直线截两条平行直线所得的同位角相等;
两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;
全等三角形的对应边、对应角相等。
在本书中我们将这些真命题均作为公理。
(二)定理教师引导学生通过举反例来说明下面两题中归纳出的结论是错误的。从而说明证明的重要性。
1、教师讲解:请大家看下面的例子:
当n=1时,(n2-5n+5)2=1;
当n=2时,(n2-5n+5)2=1;
当n=3时,(n2-5n +5)2=1.
我们能不能就此下这样的结论:对于任意的正整数(n2-5n+5)2的值都是1呢?
实际上我们的猜 测是错误的,因为当n=5时 ,(n2-5n+5)2=25.
2、教师再提出一个问题让学生回答:如果a=b,那么a2=b2.由此我们猜想:当a> b时,a2>b2.这个命题是真命题吗?
[答案:不正确,因为3>-5,但32<(-5)2]
教师总结:在前面的学习过程中,我们用观察、验证、归纳、类比等方法,发现了很多几何图形的性质。但由前面两题我们又知道, 这些方法得到 的结论有 时不具有一般性。也就是说,由这些方法得到的命 题可能是真命题,也可能 是假命题。
教师讲解:数学中有些命题可以从公理出发用逻辑推理的方 法证明它们是正确的,并且可以进一�
(三)例题与证明
例如,有了“三角形的内角和等于1 80”这 条定 理后,我们还可以证明刻画直角三角形的两个锐角之间的数量关系的命题:直角 三角形的两个锐角互余。
教师板书证明过程。
教师讲解:此命题可以用�
定理的作用不仅在于它揭示了客观事物的本质属性,而且可
三、随堂练习
课本P66练习第1、2题。
四、课时总结
1、在长期实践中总结出来为 真命 题的命题叫做公理。
2、用逻辑推理的方法证明它们是正确的命题叫做定理
五、布置作业
初中数学教案 2
教学目标:
(一)知识与技能
理解单项式及单项式系数、次数的概念;能准确迅速地确定一个单项式的系数和次数;会用含字母的式子表示实际问题中的数量关系。
(二)过程与方法
1.在经历用字母表示数量关系的过程中,发展符号感;
2. 通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力
(三)情感态度价值观
1.通过丰富多彩的现实情景,让学生经历从具体问题中抽象出数量关系,在解决问题中了解数学的价值,增长“用数学”的信心。
2.通过用含字母的式子描述现实世界中的数量关系,认识到它是解决实际问题的重要数学工具之一。
教学重、难点:
重点:单项式及单项式系数、次数的概念。
难点:单项式次数的概念;单项式的书写格式及注意点。
教学方法:
引导——探究式
在感性材料的基础上,学生自主探究现实情景中用字母表示数的问题,通过观察、分析、比较,找出材料中个体的共同点,教师引导学生共同抽象、概括单项式及相关的概念。
教具准备:
多媒体课件、小黑板。
教学过程:
一、 创设情境,引入新课
出示一张奔驰在青藏铁路线上的列车照片,并配上歌曲《天路》,边欣赏边向学生介绍青藏铁路所创造的历史之最。
情境问题:
青藏铁路西线上,在格尔木到拉萨之间有一段很长的冻土地段。列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答:列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?
设计意图:从学生熟悉的情境出发,创设情境,让学生感受青藏铁路的伟大成就,激发
爱国主义情感,得到一次情感教育。
解:根据路程、速度、时间之间的关系:路程=速度×时间
2小时行驶的路程是:100×2=200(千米)
3小时行驶的路程是:100×3=300(千米)
t小时行驶的路程是:100×t=100t(千米)
注意:在含有字母的式子中若出现乘号,通常将乘号写作“ · ”或省略不写。
如:100×a可以写成100a或100a。
代数式:用基本的运算符号(运算包括加、减、乘除、乘方等)把数和表示数的字母连接起来的式子。
代数式可以简明地表示数量和数量的关系,本节我们就来学习最基本也是最重要的一类代数式整式。
设计意图:从学生已有的数学经验:路程=速度×时间出发,建立新旧知识之间的联系
让学生历一个从一般到特殊再到一般的认识过程,发展学生的认知观念。
二、合作交流,探究新知
探究
思考:用含字母的式子填空(独立完成),并观察列出的式子有什么共同特点(小组可交流讨论)。
1、边长为a的正方体的表面积是__,体积是__.
2、铅笔的单价是x元,圆珠笔的单价是铅笔的2.5倍,则圆珠笔的单价是___元。
3、一辆汽车的速度是v千米∕小时,它t小时行驶的路程为__千米。
4、数n的相反数是__。
解:(1)6a2、 a3 (2)2.5x (3) vt (4)-n
思考:它们有什么共同的特点?
6a 2=6·a·a a3=a·a·a 2.5x=2.5·x vt=v·t -n=-1·n
单项式:数与字母、字母与字母的乘积。
注意:单独的一个数或字母也是单项式。
设计意图:从熟悉的实际背景出发,充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,获得数学猜想和数学经验,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。
火眼金睛
下列各代数式中哪些是单项式哪些不是?
(1)a (2) 0 (3) a2
(4) 6a (5)
(6)
(7)3a+2b (8)xy2
设计意图:加强学生对不同形式的单项式的直观认识。
解剖单项式
系数:单项式中的数字因数。
如:-3x的系数是 ,-ab的系数是 , 的系数是 。
次数:一个单项式中的所有字母的指数的和。
如:-3x的次数是 ,ab的次数是 。
小试身手
单项式 2a 2 -1.2h xy2 -t2 -32x2y
系数
次数
设计意图:了解学生对单项式系数、次数的概念是否理解,找出存在的问题,从而进一步巩固概念。
单项式的注意点:
(1)数与字母相乘时,数应写在字母的___,且乘号可_________;
(2)带分数作为系数时,应改写成_______的形式;
(3)式子中若出现相除时,应把除号写成____的形式;
(4)把“1”或“-1”作为项的系数时,“1”可以__不写。
行家看门道
①1x ②-1x
③a×3 ④a÷2
⑤ ⑥m的系数为1,次数为0
⑦ 的系数为2,次数为2
设计意图:单项式的书写和表示有其特有的格式和注意点,通过以上两个题目让学生进一步明确注意点。
三、例题讲解,巩固新知
例1:用单项式填空,并指出它们的系数和次数:
(1)每包书有12册,n包书有 册;
(2)底边长为a,高为h的三角形的面积 ;
(3)一个长方体的长和宽都是a,高是h,它的体积是 ;
(4)一台电视机原价a元,现按原价的9折出售,这台电视机现在的售价
为 元;
(5)一个长方形的长0.9,宽是a,这个长方形的面积是 .
解:(1)12n,它的系数是12,次数是1
(2) ,它的系数是 , 次数是2;
(3)a2h,它的系数是1,次数是3;
(4)0.9a,它的系数是0.9,次数是1;
(5)0.9a,它的系数是0.9,次数是1。
设计意图:学生能用单项式表示简单的实际问题中的数量关系,并进一步巩固单项式的系数、次数的概念。
试一试
你还能赋予0.9a一个含义吗?
设计意图:同一个式子可以表示不同的含义,通过这个例子让学生进一步体会式子更具有一般性,而且发散学生思维。
大胆尝试
写出一个单项式,使它的系数是2,次数是3.
设计意图:充分发挥学生的想象力,让每一个学生都有获得成功的体验,为不同程度的学生一个展示自我的机会,激发他们的学习兴趣。
四、拓展提高
尝试应用
用单项式填空,并指出它们的系数和次数:
(1)全校学生总数是x,其中女生占总数48%,则女生人数是 ,男生人数是 ;
(2)一辆长途汽车从杨柳村出发,3小时后到达相距s千米的溪河镇,这辆长途汽车的平均速度是 ;
(3)产量由m千克增长10%,就达到 千克;
设计意图:让学生感受单项式在实际生活中的应用,进一步掌握单项式及单项式系数、次数的概念。
能力提升
1、已知-xay是关于x、y的三次单项式,那么a= ,b= .
2、若-ax2yb+1是关于x、y的五次单项式,且系数为-3,则a= ,b= .
设计意图:照顾学有余力的学生,拓展学生思维,让学生体会跳一跳、摘桃子的乐趣。
五、小结:
本节课你感受到了吗?
生活中处处有数学
本节课我们学了什么?你能说说你的收获吗?
1、单项式的概念: 数与字母、字母与字母的乘积。
2、单项式的系数、次数的概念。
系数:单项中的数字因数;
次数:单项中所有字母的指数和。
3、会用单项式表示实际问题中的数量关系,注意列式时式子要规范书写。
设计意图:通过回顾和反思,让学生看到自己的进步,激励学生,使学生相信自己在今后的学习中不断进步,不断积累数学活动经验,促进学生形成良好的心理品质。
结束寄语
悟性的高低取决于有无悟“心”,其实,人与人的差别就在于你是否去思考,去发现!
设计意图:这是对学生的激励也是对学生的一种期盼,可以增进师生间的情感交流。
六、板书设计
2.1 整式
单项式概念 探究 例1 多
单项式的系数概念 观察交流 尝试应用 媒
单项式的次数概念 能力提升 体
七、作业:
1.作业本(必做)。
2. 请下面图片设计一个故事情境,要求其中包含的数量关系能够用单项式表示,并且指出它们的系数和次数(选做)。
设计意图:布置分层作业,既让学生掌握基础知识,又使学有余力的学生有所提高。让学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,活跃学生思维,使学生能够透彻理解知识,同时培养同学之间的竞争意识。
八、设计理念:
本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习。为突出重点,突破难点,教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫。
针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将提供大量感性材料,以启发引导为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,同时注重培养学生由感性认识上升到理性认识,为进一步学习同类项打下坚实的基础。
数学初中教案 3
一、教材分析:
(一)本节内容在全书和章节的地位
这节课是九年制义务教育课程标准实验教科书(华东版),八年级第十九章第二节“勾股定理”第一课时。勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形的主要依据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和观察分析问题的能力;通过实际分析,拼图等活动,使学生获得较为直观的印象;通过联系比较,理解勾股定理,以便于正确的进行运用。
(二)三维教学目标:
【知识与能力目标】⒈理解并掌握勾股定理的内容和证明,能够灵活运用勾股定理及其计算;
【通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。
【过程与方法目标】在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学思想,并体会数形结合和从特殊到一般的思想方法。
【情感态度与价值观】通过介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。
(三)教学重点、难点:
【教学重点】勾股定理的证明与运用
【教学难点】用面积法等方法证明勾股定理
【难点成因】对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。
【突破措施】:
⒈创设情景,激发思维:创设生动、启发性的问题情景,激发学生的问题冲突,让学生在感到“有趣”、“有意思”的状态下进入学习过程;
⒉自主探索,敢于猜想:充分让自己动手操作,大胆猜想数学问题的结论,老师是整个活动的组织者,更是一位参入者,学生之间相互交流、协作,从而形成生动的课堂环境;
⒊张扬个性,展示风采:实行“小组合作制”,各小组中自己推荐一人担任“发言人”,一人担任“书记员”,在讨论结束后,由小组的“发言人”汇报本小组的讨论结果,并可上台利用“多媒体视频展示台”展示本组的优秀作品,其他小组给予评价。这样既保证讨论的有效性,也调动了学生的学习积极性。
二、教法与学法分析
【教法分析】数学是一门培养人的思维,发展人的思维的重要学科,因此在教学中,不仅要使学生“知其然”,而且还要使学生“知其所以然”。针对初二年级学生的认知结构和心理特征,本节课可选择“引导探索法”,由浅到深,由特殊到一般的提出问题。引导学生自主探索,合作交流,这种教学理念紧随新课改理念,也反映了时代精神。基本的教学程序是“创设情景-动手操作-归纳验证-问题解决-课堂小结-布置作业”六个方面。
【学法分析】新课标明确提出要培养“可持续发展的学生”,因此教师要有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主探索,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。
三、教学过程设计
(一)创设情景
多媒体课件演示FLASH小动画片:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?问题的设计有一定的挑战性,目的是激发学生的探究欲望,老师要注意引导学生将实际问题转化为数学问题,也就是“已知一直角三角形的两边,求第三边?”的问题。学生会感到一些困难,从而老师指出学习了今天的这节课后,同学们就会有办法解决了。这种以实际问题作为切入点导入新课,不仅自然,而且也反映了“数学来源于生活”,学习数学是为更好“服务于生活”。
(二)动手操作
⒈课件出示课本P99图19.2.1:
观察图中用阴影画出的三个正方形,你从中能够得出什么结论?
学生可能考虑到各种不同的思考方法,老师要给予肯定,并鼓励学生用语言进行描述,引导学生发现SP+SQ=SR(此时让小组“发言人”发言),从而让学生通过正方形的面积之间的关系发现:对于等腰直角三角形,其两直角边的平方和等于斜边的平方,即当∠C=90°,AC=BC时,则AC2+BC2=AB2。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。⒉紧接着让学生思考:上述是在等腰直角三角形中的情况,那么在一般情况下的直角三角形中,是否也存在这一结论呢?于是再利用多媒体投影出P100图19.2.2(一般直角三角形)。学生可以同样求出正方形P和Q的面积,只是求正方形R的面积有一些困难,这时可让学生在预先准备的方格纸上画出图形,再剪一剪、拼一拼,通过小组合作、交流后,学生就能够发现:对于一般的以整数为边长的直角三角形也存在两直角边的平方和等于斜边的平方。通过学生的动手操作、合作交流,来获取知识,这样设计有利于突破难点,也让学生体会到观察、猜想、归纳的数学思想及学习过程,提高学生的分析问题和解决问题的能力。
⒊再问:当边长不为整数的直角三角形是否也存在这一结论呢?投影例题:一个边长分别为1.5,
3.6,3.9这种含有小数的直角三角形,让学生计算。这样设计的目的是让学生体会到“从特殊到一般”的情形,这样归纳的结论更具有一般性。
(三)归纳验证
【归纳】通过动手操作、合作交流,探索�
【验证】先后三次验证“勾股定理”这一结论,期间学生动手进行了画图、剪图、拼图,还有测量、计算等活动,使学生从中体会到数形结合和从特殊到一般(转载于:,bc=6cm,求ab的长。
【设计意图】通过检测,考察学生对本节课的掌握情况。
(八)小结归纳,拓展深化(2分钟)
我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主题作用,从学习的知识、方法、体验是哪个方面进行归纳,我设计了这么三个问题:
①通过本节课的学习,你学会了哪些知识,还有什么疑惑;
②通过本节课的学习,你最大的体验是什么;
③通过本节课的学习,你掌握了哪些学习数学的方法?
【设计意图】
1.让学生通过说,进一步增进认识,加深理解和记忆;
2.通过互相讲解疑惑,激发学生思考,鼓励提出疑难问题。
初中数学教案 4
教学目标:
1、经历收集数据、分析数据的活动,体会统计在实际生活中的应用。
2、收集统计在生活中应用的例子,整理收集数据的方法。
3、在解决问题的过程中,整理所学习的统计图,和统计量,能用自己的语言描述过各种统计图的特点,掌握整理收集数据的方法。
教学过程:
一、课前预习,出示预习提纲:
1、我们学习了哪几种统计图?
2、这几种统计图各有什么特点?
3、概率的知识有哪些?
二、展示与交流
(一)提出问题
1、(出示问题情境)我们班要和希望小学的六(1)班建立手拉手班级,怎么样向他们介绍我们班的一些情况呢?(指名回答)
2、师:先独立列出几个你想调查的问题。(写在练习本上)
3、四人小组交流,整理出你们小组都比较感兴趣的,又能实施的3个问题。(小组汇报、交流、整理)
4、接着全班汇报交流(师罗列在黑板上)
师:大家想调查这么多的问题,现在我们班选择其中有价值又能实施的问题进行调查。(师根据生的回答进行归纳、整理)
(二)收集数据和整理数据
1、师:调查这几个问题,你需要收集哪些数据?怎么样收集这些数据?与同伴交流收集数据的方法。
2、师:开展实际调查的话,如何进行调查比较有效?在调查的时候,大家需要注意什么?
(三)开展调查
1、针对学生提出的某个问题,先组织小组有效的开展收集和整理数据的活动,然后把数据记录下来,并进行整理。
2、师:谁来说一说你们小组是怎么样分工,怎么样调查和记录数据的?(指名汇报)
3、全班汇总、整理、归纳各小组数据。(板书)
4、师:分析上面的数据,你能得到哪些信息?
5、师:根据整理的数据,想一想绘制什么统计图比较好呢?
6、师:根据这些信息,你还能提出什么数学问题?
(四)回顾统计活动
1、师:在刚才的统计活动,我们都做了些什么?你能按顺序说一说吗?
师板书:提出问题——收集数据——整理数据——分析数据——作出决策。
2、收集在生活中应用统计的例子,并说说这些例子中的数据告诉人们哪些信息。(全班交流)
指名同学汇报,其他同学注意听,并指出这个同学举的例子中你可以获得什么信息?
3、结合生活中的例子说说收集数据有哪些方法?
(1)先让学生在小组内交流,引导学生结合例子(充分利用第2题中收集来的实例)来说说自己的方法。
(2)师归纳:常用的收集数据的方法有:查阅资料、询问他人、调查实验等。
4、师:同学们,我们已经对统计表和统计图进行了系统的学习,回忆一下我们已经学过了哪些统计图,对这些统计图,你已经知道了哪些知识?
初中数学教案 5
学习目标:
1、通过具体动手操作得出矩形的概念,知道矩形与平行四边形的区别与联系
2、通过类比平行四边形的性质定理,推导并掌握矩形的性质定理,会用定理进行一些简单的计算证明、
3、通过矩形的对角线相等这一性质能推导出直角三角形斜边上的中线等于斜边的一半,感受直角三角形与矩形之间的内在联系,发展学生的合理推理的能力
学习重难点:
重点:矩形的性质定理
难点:灵活应用矩形的性质进行有关的计算与证明
课前准备
教具准备:活动平行四边形框架、教师准备PPT课件
教学过程:
知识回顾
1、什么叫平行四边形?
2、平行四边形有哪些性质?
【设计意图】:
通过对旧知的复习,一方面巩固就知,另一方面为学习新知做好铺垫
合作探究一:矩形的定义
阅读课本第17-18页,“实验与探究”,思考:什么叫做矩形?
用四根木条制作一个平行四边形教具。利用平行四边形的不稳定性,演示下图,当平行四边形的一个内角由锐角变为钝角的过程中,会发生怎样的特殊情况,这时的图形是什么图形、从上面的演示过程可以发现:平行四边形具备什么条件时,就成了矩形?
【设计意图】:
通过小组合作观察,讨论平行四边形具备什么条件时,就成了矩形,自己归纳出矩形的定义、给学生更多的思考空间,促进学生积极思考,发展学生的思维
归纳:有一个角是直角的平行四边形叫做矩形、
合作探究二:矩形的性质定理
1、自主完成18页的观察与思考,通过实际操作回答提出的问题
2、小组合作:完成对性质的证明过程
【设计意图】:
通过利用手中的矩形纸片动手操作使学生对矩形的性质获得丰富的直观体验,为总结矩形的性质定理打下坚实基础
矩形的性质定理1:矩形的四个角都是直角
矩形的性质定理2:矩形的两条对角线相等
合作探究三:直角三角形的性质定理3
设矩形的对角线AC与BD交于点O,那么,BE是Rt△AB中一条怎样的特殊线段
(BO是Rt△ABC中斜边AC上的中线)它与AC有什么大小关�
课堂小结:
请说出你本节课的收获,与大家一块分享!!
作业:
课本P、20第2题
板书设计:
xxx
初中数学教案 6
一学期的工作结束了,可以说紧张忙碌却收获多多。回顾这学期的工作,我教九(4)班的数学,我总是在不断地摸索和学习中进行教学,工作中有收获和快乐,也有不尽如人意的地�
二、在教学过程方面
在课堂教学中我一直注重学生的参与。让学生参与到课堂教学中来,让他们自主的去探究问题,发现知识。波利亚说:“学习任何知识的最佳途径都是由自己去发现,因为这种发现理解最深刻,也最容易掌握其中的内在规律、性质和联系。”只有充分发挥学生的主体作用,让学生人人参与,才能最大限度地促进学生的发展。但还是难免受传统教学观念的影响,加之经验不足,不太敢放手,怕完成不了当趟课的教学任务。后来在学校“”的教学模式下,才开始进一步尝试,并在不断的尝试中总结经验。
三、工作中存在的问题
1)、教材挖掘不深入。
2)、教法不灵活,不能吸引学生学习,对学生的引导、启发不足。
3)、新课标下新的教学思想学习不深入。对学生的自主学习,合作学习,缺乏理论指导
4)、差生末抓在手。由于对学生的了解不够,对学生的学习态度、思维能力不太清楚。上课和复习时该讲的都讲了,学生掌握的情况怎样,教师心中无数。导致了教学中的盲目性。
四、今后努力的方向
1)、加强学习,学习新教学模式下新的教学思想。
2)、熟读初一到初三的数学教材,深入挖掘教材,进一步把握知识点和考点。
3)、多听课,学习老教师对知识点的处理和对教材的把握,以及他们处理突发事件方法。
4)、加强转差培优力度。
5)、加强教学反思,加大教学投入。
一学期的教学工作即将结束,这半年的教学工作很苦,很累,但在不断的摸索中,自己学到了很多东西。今后我会更加努力提高自己的业务水平。
初中数学教案 7
三维目标
一、知识与技能
1.能灵活列反比例函数表达式解决一些实际问题.
2.能综合利用物理杠杆知识、反比例函数的知识解决一些实际问题.
二、过程与方法
1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题.
2. 体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.
三、情感态度与价值观
1.积极参与交流,并积极发表意见.
2.体验反比例函数是有效地描述物理世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具.
教学重点
掌握从物理问题中建构反比例函数模型.
教学难点
从实际问题中寻找变量之间的关系,关键是充分运用所学知识分析物理问题,建立函数模型,教学时注意分析过程,渗透数形结合的思想.
教具准备
多媒体课件.
教学过程
一、创设问题情境,引入新课
活动1
问 属:在物理学中,有很多量之间的变化是反比例函数的关系,因此,我们可以借助于反比例函数的图象和性质解决一些物理学中的问题,这 一半,则动力臂至少要加长多少?
设计意图:
物理学中的很多量之间的变化是反比例函数关系.因此,在这儿又一次借助反比例函数的图象和性质解决一些物理学中的问题,即跨学科综合应用.
师生行为:
先由学生根据“杠杆定律”解决上述问题.
教师可引导学生揭示“杠杆乎衡”与“反比例函数”之间的关系.
教师在此活动中应重点关注:
①学生能否主动用“杠杆定律”中杠杆平衡的条件去理解实际问题,从而建立与反比例函数的关系;
②学生能否面对困难,认真思考,寻找解题的途径;
③学生能否积极主动地参与数学活动,对数学和物理有着浓厚的兴趣.
师:“撬动石头”就意味着达到了“杠杆平衡”,因此可用“杠杆定律”来解决此问题.
生:解:(1)根据“杠杆定律” 有
Fl=1200×0.5.得F =600l
当l=1.5时,F=6001.5 =400.
因此,撬动石头至少需要400牛顿的力.
(2)若想使动力F不超过题(1)中所用力的一半,即不超过200牛,根据“杠杆定律”有
Fl=600,l=600F .
当F=400×12 =200时,l=600200 =3.
3-1.5=1.5(米)
因此,若想用力不超过400牛顿的一半,则动力臂至少要如长1.5米.
生:也可用不等式来解,如下:
Fl=600,F=600l .
而F≤400×12 =200时.
600l ≤200
l≥3.
所以l-1.5≥3-1.5=1.5.
即若想用力不超过400牛顿的一半,则动力臂至少要加长1.5米.
生:还可由函数图象,利用反比例函数的性质求出.
师:很棒!请同学们下去亲自画出图象完成,现在请同学们思考下列问题:
用反比例函数的知识解释:在我们使用橇棍时,为什么动力臂越长越省力?
生:因为阻力和阻力臂不变,设动力臂为l,动力为F,阻力×阻力臂=k(常数且k>0),所以根据“杠杆定理”得Fl=k,即F=kl (k为常数且k>0)
根据反比例函数的性质,当k>O时,在第一象限F随l的增大而减小,即动力臂越长越省力.
师:其实反比例函数在实际运用中非常广泛.例如在解决经济预算问题中的应用.
活动3
问题:某地上年度电价为0.8元,年用电量为1亿度,本年度计划将电价调至0.55~0.75元之间,经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x-0.4)元成反比例.又当x=0.65元时,y=0.8.(1)求y与x之间的函数关系式;(2)若每度电的成本价0.3元,电价调至0.6元,请你预算一下本年度电力部门的纯收人多少?
设计意图:
在生活中各部门,经常遇到经济预算等问题,有时关系到因素之间是反比例函数关系,对于此类问题我们往往由题目提供的信息得到变量之间的函数关系式,进而用函数关系式解决一个具体问题.
师生行为:
由学生先独立思考,然后小组内讨论完成.
教师应给予“学困生”以一定的帮助.
生:解:(1)∵y与x -0.4成反比例,∴设y=kx-0.4 (k≠0).
把x=0.65,y=0.8代入y=kx-0.4 ,得
k0.65-0.4 =0.8.
解得k=0.2,∴y=0.2x-0.4=15x-2
∴y与x之间的函数关系为y=15x-2
(2)根据题意,本年度电力部门的纯收入为
(0.6-0.3)(1+y)=0.3(1+15x-2 )=0.3(1+10.6×5-2 )=0.3×2=0.6(亿元)
答:本年度的纯收人为0.6亿元,师生共析:
(1)由题目提供的信息知y与(x-0.4)之间是反比例函数关系,把x-0.4看成一个变量,于是可设出表达式,再由题目的条件x=0.65时,y=0.8得出字母系数的值;
(2)纯收入=总收入-总成本.
三、巩固提高
活动4
一定质量的二氧化碳气体,其体积y(m3)是密度ρ(kg/m3)的反比例函数,请根据下图中的已知条件求出当密度ρ=1.1 kg/m3时二氧化碳气体的体积V的值.
设计意图:
进一步体现物理和反比例函数的关系.
师生行为
由学生独立完成,教师讲评.
师:若要求出ρ=1.1 kg/m3时,V的值,首先V和ρ的函数关系.
生:V和ρ的反比例函数关系为:V=990ρ .
生:当ρ=1.1kg/m3根据V=990ρ ,得
V=990ρ =9901.1 =900(m3).
所以当密度ρ=1. 1 kg/m3时二氧化碳气体的气体为900m3.
四、课时小结
活动5
你对本节内容有哪些认识?重点掌握利用函数关系解实际问题,首先列出函数关系式,利用待定系数法求出解 析式,再根据解析式解得.
设计意图:
这种形式的小结,激发了学生的主动参与意识,调动了学生的学习兴趣,为每一位学生都创造了在数学学习活动中获得成功的体验机会,并为程度不同的学生提供了充分展示自己的机会,尊重学生的个体差异,满足多样化的学习需要,从而使小结不流于形式而具有实效性.
师生行为:
学生可分小组活动,在小组内交流收获, 然后由小组代表在全班交流.
教师组织学生小结.
反比例函数与现实生活联系非常紧密,特别是为讨论物理中的一些量之间的关系打下了良好的基础.用数学模型的解释物理量之间的关系浅显易懂,同时不仅要注意跨学科间的综合,而本学科知识间的整合也尤为重要,例如方程、不等式、函数之间的不可分割的关系.
初中数学教案 8
教学内容:在学生初步了解,年月日、季度的概念后,寻找历法与扑克之间的关系。
教学目标:1、通过对"扑克"有趣的研究,培养起学生对生活中平常小事的关注。
2、调动学生丰富的`联想,养成一种思考的习惯。
教学重难点:"扑克"与年月日、季度的联系。
教学过程:
一、谈话引入
师:同学们,这个你们一定见过吧!这是我们生活中比较常见的"扑克"。谁愿意告诉我们,你对扑克的了解呢?
生:......
(教师补充,引发学生的好奇心。)
师: "扑克"还有一种作用,而且与数学有关!
生:......
二、新课
1、桃、心、梅、方4种花色可以代表一年四季春、夏、秋、冬
2、大王=太阳 小王=月亮 红=白天 黑=夜晚
3、A=1 2=2 3=3 4=4 5=5 6=6 7=7 8=8 9=9 10=10 J=11 Q=12 K=13 大王=1 小王=1
4、所有牌的和+小王=平年的天数
所有牌的和+小王+大王=闰年的天数
5、扑克中的K、Q、J共有12张,3×4=12,表示一年有12个月
6、365÷7≈52一年有52个星期。54张牌中除去大王、小王有52张是正牌,表示一年有52个星期。
7、一种花色的和=一个季度的天数
一种花色有13张牌=一个季度有13个星期
三、小结
生活中有很多的数学,他每时每刻都在我们的身边出现,只是我们大家没有注意到。请大家都要学会留心观察,做生活的有心人。
初中数学教案 9
教学目标:
1、知识与技能:通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。
2、过程与方法:通过观察,归纳一元一次方程的概念。
3、情感与态度:体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决。
教学重点:
归纳一元次方程的概念
教学难点:
感受方程作为刻画现实世界有效模型的意义。
教学过程:
一、情景导入:
我能猜出你们的年龄,相信吗?
只要任何一个同学回答我一个问题,我就能马上猜到他的年龄是多少岁,我们来试试吧。
问:你的年龄乘以2加3等于多少?
学生说出结果,教师猜测年龄,并问:你们知道我是怎么做的吗?
学生讨论并回答
二、知识探究:
1、方程的教学(投影演示)
小彬和小明也在进行猜年龄游戏,我们来看一看。
找出这道题中的等量关系,列出方程。
大家观察,这两个式子有什么特点。
讨论并回答:什么是方程?方程有哪些特点?
2、 判断下列式子是不是方程?
(1)X+2=3(是)(2)X+3Y=6(是)
(3)3M-6(不是)(4)1+2=3(不是)
(5)X+3>5(不是)(6)Y-12=5(是)
三、合作交流
1、如果告诉我们一些实际生活中的问题,大家能够自己列出方程吗?(投影演示)
情景一:小颖种了一株树苗,开始时树苗高为40厘米,栽种后每周树苗长高约15厘米,大约几周后树苗长高到1米?
你能找出题中的等量关系吗?怎样列方程?由此题你们想到了些什么?
情景二:第五次全国人口普查统计数据(20xx年3月28日新华社公布)
截至20xx年11月1日0时,全国每10万人中具有大学文化程度的人数为3611人,比1990年7月1日0时增长了153.94%
1990年6月底每10万人中约有多少人具有大学文化程度?情景三:西湖中学的体育场的足球场,其周长为200米,长和宽之差为12米,这个足球场的长和宽分别是多少米?
下面是刚才根据几道情景题所列的方程,分析下列方程有何共同点?
2X–5=21
40+15X=100
X(1+153.94﹪)=3611
2[X+(X+12)]=200
2[Y+(Y–12)]=200
在一个方程中,只含有一个未知数X(元),并且未知数的指数是1(次),这样的方程叫一元一次方程。
问:大家刚才都已经自己列出了方程,那个同学能够说一下你是怎样列出方程的,列方程应该分为那几步呢?
生:分组讨论,回答列方程的步骤(1)找等量关系(2)设未知数(3)列方程
四、随堂练习
1、投影趣味习题,
2、做一做
下面有两道题,请选做一题。
(1)、请根据方程2X+3=21自己设计一道有实际背景的应用题。
(2)、发挥你的想象,用自己的年龄编一道应用题,并列出方程。
五、课堂小节
1、这节课你学到了什么?
2、这节课给你印象最深的是什么?
六、作业:
分组布置
初中数学教案 10
学习目标:
1、通过具体动手操作得出矩形的概念,知道矩形与平行四边形的区别与联系
2、通过类比平行四边形的性质定理,推导并掌握矩形的性质定理,会用定理进行一些简单的计算证明
3、通过矩形的对角线相等这一性质能推导出直角三角形斜边上的中线等于斜边的一半,感受直角三角形与矩形之间的内在联系,发展学生的合理推理的能力
学习重难点:
重点:矩形的性质定理
难点:灵活应用矩形的性质进行有关的计算与证明
课前准备
教具准备:活动平行四边形框架、教师准备PPT课件
教学过程:
知识回顾
1、什么叫平行四边形?
2、平行四边形有哪些性质?
【设计意图】:
通过对旧知的复习,一方面巩固就知,另一方面为学习新知做好铺垫
合作探究一:矩形的定义
阅读课本第17-18页,“实验与探究”,思考:什么叫做矩形?
用四根木条制作一个平行四边形教具。利用平行四边形的不稳定性,演示下图,当平行四边形的一个内角由锐角变为钝角的过程中,会发生怎样的特殊情况,这时的图形是什么图形、从上面的演示过程可以发现:平行四边形具备什么条件时,就成了矩形?
【设计意图】:
通过小组合作观察,讨论平行四边形具备什么条件时,就成了矩形,自己归纳出矩形的定义、给学生更多的思考空间,促进学生积极思考,发展学生的思维
归纳:有一个角是直角的平行四边形叫做矩形
合作探究二:矩形的性质定理
1、自主完成18页的观察与思考,通过实际操作回答提出的问题
2、小组合作:完成对性质的证明过程
【设计意图】:
通过利用手中的矩形纸片动手操作使学生对矩形的性质获得丰富的直观体验,为总结矩形的性质定理打下坚实基础
矩形的性质定理1:矩形的四个角都是直角
矩形的性质定理2:矩形的两条对角线相等
合作探究三:直角三角形的性质定理3
设矩形的对角线AC与BD交于点O,那么,BE是Rt△AB中一条怎样的特殊线段
(BO是Rt△ABC中斜边AC上的中线)它与AC有什么大小关�
课堂小结:
请说出你本节课的收获,与大家一块分享!!
作业:
课本P、20第2题
板书设计:
xx
初中数学教案 11
一学期的工作结束了,可以说紧张忙碌却收获多多。回顾这学期的工作,我教九(4)班的数学,我总是在不断地摸索和学习中进行教学,工作中有收获和快乐,也有不尽如人意的地�
二、在教学过程方面
在课堂教学中我一直注重学生的参与。让学生参与到课堂教学中来,让他们自主的去探究问题,发现知识。波利亚说:“学习任何知识的最佳途径都是由自己去发现,因为这种发现理解最深刻,也最容易掌握其中的内在规律、性质和联系。”只有充分发挥学生的主体作用,让学生人人参与,才能最大限度地促进学生的发展。但还是难免受传统教学观念的影响,加之经验不足,不太敢放手,怕完成不了当趟课的教学任务。后来在学校“”的教学模式下,才开始进一步尝试,并在不断的尝试中总结经验。
三、工作中存在的问题
1)、教材挖掘不深入。
2)、教法不灵活,不能吸引学生学习,对学生的引导、启发不足。
3)、新课标下新的教学思想学习不深入。对学生的自主学习,合作学习,缺乏理论指导
4)、差生末抓在手。由于对学生的`了解不够,对学生的学习态度、思维能力不太清楚。上课和复习时该讲的都讲了,学生掌握的情况怎样,教师心中无数。导致了教学中的盲目性。
四、今后努力的方向
1)、加强学习,学习新教学模式下新的教学思想。
2)、熟读初一到初三的数学教材,深入挖掘教材,进一步把握知识点和考点。
3)、多听课,学习老教师对知识点的处理和对教材的把握,以及他们处理突发事件方法。
4)、加强转差培优力度。
5)、加强教学反思,加大教学投入。
一学期的教学工作即将结束,这半年的教学工作很苦,很累,但在不断的摸索中,自己学到了很多东西。今后我会更加努力提高自己的业务水平。
初中数学教案 12
课题:
对数函数
(1)——定义、图象、性质目标:
1.了解对数函数的定义、图象及其性质以及它与指数函数间的关系,会求对数函数的定义域。
2.培养培养观察分析、抽象概括能力、归纳总结能力、逻辑推理能力、化归转化能力;
3.培养坚忍不拔的意志,培养发现问题和提出问题的意识、善于独立思考的习惯,体会事物之间普遍联系的辩证观点。
重点:对数函数的定义、图象、性质
难点:对数函数与指数函数间的关系
过程:
一、复习引入:实例引入:回忆学习指数函数时用的实例我们研究指数函数时,曾经讨论过细胞分裂问题,某种细胞分裂时,得到的细胞的个数 是分裂次数 的函数,这个函数可以用指数函数 = 表示。现在,我们来研究相反的问题,如果要求这种细胞经过多少次分裂,大约可以得到1万个,10万个……细胞,那么,分裂次数 就是要得到的细胞个数 的函数。根据对数的定义,这个函数可以写成对数的形式就是 如果用 表示自变量, 表示函数,这个函数就是 由反函数概念可知, 与指数函数 互为反函数这一节,我们来研究指数函数的反函数对数函数
二、新课
1.对数函数的定义:函数 叫做对数函数;它是指数函数 的反函数。对数函数 的定义域为 ,值域为 。
2.对数函数的图象由于对数函数 与指数函数 互为反函数,所以 的图象与 的图象关于直线 对称。因此,我们只要画出和 的图象关于 对称的曲线,就可以得到 的图象,然后根据图象特征得出对数函数的性质。
活动设计:由学生任意取底数作图,观察分析讨论,教师引导、整理 3.对数函数的性质由对数函数的图象,观察得出对数函数的性质。见P87 表 图象性质定义域:(0,+∞)值域:R过点(1,0),即当 时, 时 时 时 时 在(0,+∞)上是增函数在(0,+∞)上是减函数活动设计:学生观察、分析讨论,教师引导、整理4.应用例1.(课本第94页)求下列函数的定义域:(1) ; (2) ; (3) 分析:此题主要利用对数函数 的定义域(0,+∞)求解。解:(1)由 >0得 ,∴函数 的定义域是 ;(2)由 得 ,∴函数 的定义域是 (3)由9- 得-3 ,∴函数 的定义域是 注:此题只是对数函数性质的简单应用,应强调学生注意书写格式。例2.求下列函数的反函数① ② 解:① ∴ ② ∴
三、小结:对数函数定义、图象、性质四、作业: 课本第95页 练习 1,2 习题2.8 1,2
初中数学教案 13
教学目标
1。进一步掌握有理数的运算法则和运算律;
2。使学生能够熟练地按有理数运算顺序进行混合运算;
3。注意培养学生的运算能力。
教学重点和难点
重点:有理数的混合运算。
难点:准确地掌握有理数的运算顺序和运算中的符号问题。
课堂教学过程设计
一、从学生原有认知结构提出问题
1、计算(五分钟练习:
(5)-252;(6)(-2)3;(7)-7+3-6;(8)(-3)×(-8)×25;
(13)(-616)÷(-28);(14)-100-27;(15)(-1)101;(16)021;
(17)(-2)4;(18)(-4)2;(19)-32;(20)-23;
(24)3.4×104÷(-5)。
2、说一说我们学过的有理数的运算律:
加法交换律:a+b=b+a;
加法结合律:(a+b)+c=a+(b+c);
乘法交换律:ab=ba;
乘法结合律:(ab)c=a(bc);
乘法分配律:a(b+c)=ab+ac.
二、讲授新课
前面我们已经学习了有理数的加、减、乘、除、乘方等运算,若在一个算式里,含有以上的混合运算,按怎样的顺序进行运算?
1、在只有加减或只有乘除的同一级运算中,按照式子的。顺序从左向右依次进行。
审题:
(1)运算顺序如何?
(2)符号如何?
说明:含有带分数的加减法,方法是将整数部分和分数部分相加,再计算结果。带分数分成整数部分和分数部分时的符号与原带分数的符号相同。
课堂练习
审题:运算顺序如何确定?
注意结果中的负号不能丢。
课堂练习
计算:(1)-2.5×(-4.8)×(0.09)÷(-0.27);
2、在没有括号的不同级运算中,先算乘方再算乘除,最后算加减。
例3计算:
(1)(-3)×(-5)2;
(2)[(-3)×(-5)]2;
(3)(-3)2-(-6);
(4)(-4×32)-(-4×3)2。
审题:运算顺序如何?
解:(1)(-3)×(-5)2=(-3)×25=-75。
(2)[(-3)×(-5)]2=(15)2=225。
(3)(-3)2-(-6)=9-(-6)=9+6=15。
(4)(-4×32)-(-4×3)2
=(-4×9)-(-12)2
=-36-144
=-180。
注意:搞清(1),(2)的运算顺序,(1)中先乘方,再相乘,(2)中先计算括号内的,然后再乘方。(3)中先乘方,再相减,(4)中的运算顺序要分清,第一项(-4×32)里,先乘方再相乘,第二项(-4×3)2中,小括号里先相乘,再乘方,最后相减。
课堂练习
计算:
(1)-72;(2)(-7)2;(3)-(-7)2;
(7)(-8÷23)-(-8÷2)3。
例4计算
(-2)2-(-52)×(-1)5+87÷(-3)×(-1)4。
审题:(1)存在哪几级运算?
(2)运算顺序如何确定?
解:(-2)2-(-52)×(-1)5+87÷(-3)×(-1)4
=4-(-25)×(-1)+87÷(-3)×1(先乘方)
=4-25-29(再乘除)
=-50。(最后相加)
注意:(-2)2=4,-52=-25,(-1)5=-1,(-1)4=1。
课堂练习
计算:
(1)-9+5×(-6)-(-4)2÷(-8);
(2)2×(-3)3-4×(-3)+15。
3、在带有括号的运算中,先算小括号,再算中括号,最后算大括号。
课堂练习
计算:
三、小结
教师引导学生一起总结有理数混合运算的规律。
1、先乘方,再乘除,最后加减;
2、同级运算从左到右按顺序运算;
3、若有括号,先小再中最后大,依次计算。
四、作业
1、计算:
2、计算:
(1)-8+4÷(-2);(2)6-(-12)÷(-3);
(3)3·(-4)+(-28)÷7;(4)(-7)(-5)-90÷(-15);
3、计算:
4、计算:
(7)1÷(-1)+0÷4-(-4)(-1);(8)18+32÷(-2)3-(-4)2×5。
5、计算(题中的字母均为自然数):
(1)(-12)2÷(-4)3-2×(-1)2n-1;
(4)[(-2)4+(-4)2·(-1)7]2m·(53+35)。
初中数学优秀教案 14
教学目标
1. 使学生掌握不等式的三条基本性质;
2. 培养学生观察、分析、比较的能力,提高他们灵活地运用所学知识解题的能力.
教学重点和难点
重点:不等式的三条基本性质的运用.
难点:不等式的基本性质3的运用.
课堂教学过程设计
一、从学生原有的认知结构提出问题
1. 什么叫不等式?说出不等式的三条基本性质.
2. 当x取下列数值时,不等式1-5x<16是否成立?
3,-4,-3,4,2.5,0,-1.
3. 用不等式表示下列数量关系:
(1) x的3倍大于x的2倍与5的差; (3)y的与x的的差小于2;
(2) y的一半与4的和是负数; (4)5与a的4倍的差不是正数.
4. 按照下列条件写出仍然成立的不等式,并说明根据不等式的哪一条基本性质:
(1)m>n,两边都减去3; (2)m>n,两边同乘以3;
(3)m>n,两边同乘以-3; (4)m>n,两边同乘以-3;
(5)m>n,两边同乘以 .
(以上各题中,从第2题开始,用投影仪打在屏幕上.学生在回答上述问题时,如遇到困难,教师应做适当点拨)在学生回答完上述问题的基础上,教师指出:本节课我们将通过学习例题和练习,进一步巩固并熟练掌握不等式的基本性质,尤其是不等式基本性质。
二、讲授新课
例1 在下列各题横线上填入不等号,使不等式成立.并说明是根据哪一条不等式基本性质.
(1)若a–3<9,则a_____12; (2)若-a<10,则a_____–10;
(3)若a>–1,则a_____–4; (4)若-a>,则a_____0.
答:(1)a<12,根据不等式基本性质1. (2)a>-10,根据不等式基本性质3.
(3)a>-4,根据不等式基本性质2. (4)a<0,根据不等式基本性质3.
(在讲授本课时,应启发学和在添加不等号“>”或“<”时,要和题目中的已知条件进行对比,观察它是根据不等式的哪条基本性质,是怎样由已知条件变形得到的.同时还应强调在运用不等式基本性质3时,不等号要改变方向=
例2 已知,用a<0,“<”或“>”号填空:
(1)a+2_____2; (2)a-1_____–1; (3)3a_____0; (4)a-1______0; (5)a2 _______0; (6)a3______0; (7)a-1______0; (8)|a|______0。
答:(1)a+2<2,根据不等式基本性质1. (2)a-1<-1,根据不等式基本性质1.
(3)因为3a,根据不等式基本性质2. (4)->0,根据不等式基本性质3.
(5)因为a<0,两边同乘以a<0,由不等式基本性质3,得a2>0.
(6)因为a<0,两边同乘以a2>0,由不等式基本性质2,得a3<0。
(7)因为a<0,两边同加上-1,由不等式基本性质1,得a-1<-1.
又已知,-1<0,所以a-1<0.
(8)因为。a<0,所以a≠0,所以|a|>0.
(本例题除了进一步运用不等式的三条基本性质外,还涉及了一些旧的基础知识,如a<0表示a是负数;a>0表示a是正数;|a|是非负数.后面几个小题较灵活,条件由具体数字改为抽象的字母,这里字母代表正数还是代表负数是解决问题的关键)
例外 判断下列各题的推导是否正确?为什么?(投影)(请学生回答)
(1)因为7.5>5.7,所以-7.5<-5.7; (2)因为a+8>4,,所以a>-4; (3)因为4a>4b,所以a>b; (4)因为a<b,所以<>'
(5)因为>-1,所以a>4; (6)因为-1>-2,所以-a-1>-a-2;
(7)因为3>2,所以3a>2a.
答:(1)正确,根据不等式基本性质3. (2)正确,根据不等式基本性质1.
(3)正确,根据不等式基本性质2. (4)不对,根据不等式基本性质3,应改为>; (5)因为>-1,所以a>4
答:(1)正确,根据不等式基本性质3。 (2)正确,根据不等式基本性质1。
(3)正确,根据不等式基本性质2。 (4)不对,根据不等式基本性质3,应改为。
(5)不对,根据不等式基本性质5,应改为a<4。
(6)正确,根据不等式基本性质1。 (7)不对,应分情况逐一讨论。
当a>0时,3a>2a。(不等式基本性质2)
当a=0时,3a<2a。
当a<0时,3a<2a。(不等式基本性质3)
(当学生在回答本题的过程当中,当遇到困难或问题时,教师应做适当引导、启发、帮助)
三、课堂练习(投影)
1。按照下列条件,写出仍能成立的不等式:
(1)由-2<-1,两边都加-a; (2)由-4x<0,两边都乘以-;
(3)由7>5,两边都乘以不为零的-a。
2?用“>”或“<”号填空:
(1)当a-b<0时,a______b: (2)当a<0,b<0时,ab_____0;
(3)当a<0,b<0时,ab____0; (4)当a>0,b<0时,ab____0;
(5)若a____0,b<0,则ab>0; (6)若<0,且b<0,则a_____0。
四、师生共同小结
在师生共同回顾本节课所学内容的基础上,教师指出:①在利用不等式的基本性质进行变形时,当不等式的两边都乘以(或除以)同一个字母,字母代表什么数是问题的关键,这决定了是用不等式基本性质2还是基本性质3,也就是不等号是否要改变方向的问题;②运用不等式基本性质3时,要变两个号,一个性质符号,另一个是不等号。
五、作业
1。根据不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式:
(1)x-1<0; (2)x>-x+6;
(3)3x>7; (4)-x<-3。
2。设a<b,用“>”或“>”号连接下列各题中的两个代数式:
(1)a-1,b-1; (2)a+2,b+2; (3)2a,2b;
(4); (5); (6)-b,-a。
3。用“>”号或“<”号填空:
(1)若a-b<0,则a_____b; (2)若b<0,则a+b_____a;
(3)若a=0,则a+b_____b; (4)若<0,则ab_____;
(5)b<a<2,则(a-2)(b-2)____0;(2-a)(2-b)____;(2-a)(a-b)。
课堂教学设计说明
由于本节课的教学目标是使学生进一步掌握不等式基本性质,尤其是基本性质3。故在设计教学过程时,注意在教师的主导作用下让学生以练为主,从而使学生在初步掌握不等式的三条基本性质的基础上,通过口答,笔做,讨论等不同的方式的练习,提高学生将不等式正确、灵活进行变形的能力。
初中数学教案 15
平行线的判定(1)
课型:新课: 备课人:韩贺敏 审核人:霍红超
学习目标
1.经历观察、操作、想像、推理、交流等活动,进一步发展推理能力和有条理表达能力。
2.掌握直线平行的条件,领悟归纳和转化的数学思想
学习重难点:探索并掌握直线平行的条件是本课的重点也是难点。
一、探索直线平行的条件
平行线的判定方法1:
二、练一练
1、判断题
1.两条直线被第三条直线所截,如果同位角相等,那么内错角也相等。( )
2.两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等。( )
2、填空1.如果∠3=∠7,或xx,那么xx,理由是xx;如果∠5=∠3,或笔xx,那么xx, 理由是xxx; 如果∠2+ ∠5= xx 或者xx,那么a∥b,理由是xx.
(2)xx
(3)xx
2.若∠2=∠6,则xx∥xx,如果∠3+∠4+∠5+∠6=180°, 那么xx∥xx,如果∠9=xx,那么AD∥BC;如果∠9=xx,那么AB∥CD.
三、选择题
1.下列条件中,不能判定AB∥CD的是( )
A.AB∥EF,CD∥EF B.∠5=∠A; C.∠ABC+∠BCD=180° D.∠2=∠3
2.右图,由图和已知条件,下列判断中正确的是( )
A.由∠1=∠6,得AB∥FG;
B.由∠1+∠2=∠6+∠7,得CE∥EI
C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;
D.由∠5=∠4,得AB∥FG
四、已知直线a、b被直线c所截,且∠1+∠2=180°,试判断直线a、b的位置关系,并说明理由。
五、作业课本15页-16页练习的1、2、3、
5.2.2平行线的判定(2)
课型:新课: 备课人:韩贺敏 审核人:霍红超
学习目标
1.经历观察、操作、想像、推理、交流等活动,进一步发展空
间观念,推理能力和有条理表达能力。
毛2.分析题意说理过程,能灵活地选用直线平行的方法进行说理。
学习重点:直线平行的。条件的应用。
学习难点:选取适当判定直线平行的方法进行说理是重点也是难点。
一、学习过程
平行线的判定方法有几种?分别是什么?
二.巩固练习:
1.若∠2=∠6,则xx∥xx,如果∠3+∠4+∠5+∠6=180°, 那么xx∥xx,如果∠9=xx,那么AD∥BC;如果∠9=xx,那么AB∥CD.
(第1题) (第2题)
2.一个合格的变形管道ABCD需要AB边与CD边平行,若一个拐角∠ABC=72°,则另一个拐角∠BCD=xx时,这个管道符合要求。
二、选择题。
1.下列判断不正确的是( )
A.因为∠1=∠4,所以DE∥AB
B.因为∠2=∠3,所以AB∥EC
C.因为∠5=∠A,所以AB∥DE
D.因为∠ADE+∠BED=180°,所以AD∥BE
2.直线AB、CD被直线EF所截,使∠1=∠2≠90°,则( )
A.∠2=∠4 B.∠1=∠4 C.∠2=∠3 D.∠3=∠4
三、解答题。
1.你能用一张不规则的纸折出两条平行的直线吗?与同伴说说你的折法。
2.已知,点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?试用两种方法说明理由。
初中数学教案 16
教学目标:
1、知识与技能:(1)通过学生熟悉的问题情景,以过探索有理数减法法则得出的过程,理解有理数减法法则的合理性。
(2)能熟练进行有理数的减法法则。
2、过程与方法
通过实例,归纳出有理数的减法法则,培养学生的逻辑思维能力和运算能力,通过减法到加法的转化,让学生初步体会人归的数学思想。
重点、难点
1、重点:有理数减法法则及其应用。
2、难点:有理数减法法则的应用符号的改变。
教学过程:
一、创设情景,导入新课
1、有理数加法运算是怎样做的?(-5)+3= —3+(—5)=
—3+(+5)=
2、-(-2)= -[-(+23)]=,+[-(-2)]=
3、20xx的某天,北京市的最高气温是-20C,最低气温是-100C,这天北京市的温差是多少?
导语:可见,有理数的减法运算在现实生活中也有着很广泛的应用。(出示课题)
二、合作交流,解读探究
1(-2)-(-10)=8=(-2)+8
2:珠穆朗玛峰海拔高度为8848米,与吐鲁番盆地海拔高度为-155米,珠穆朗玛峰比吐鲁番盆地高多少米?
3、通过以上列式,你能发现减法运算与加法运算的关系吗?
(学生分组讨论,大胆发言,总结有理数的减法法则)
减去一个数等于加上这个数的相反数
教师提问、启发:(1)法则中的“减去一个数”,这个数指的是哪个数?“减去”两字怎样理解?(2)法则中的“加上这个数的相反数”“加上”两字怎样理解?“这个数的相反数”又怎样理解?(3)你能用字母表示有理数减法法则吗?
三、应用迁移,巩固提高
1、P.24例1 计算:
(1) 0-(-3.18)(2)(-10)-(-6)(3)-
解:(1)0-(-3.18)=0+3.18=3.18
(2)(-10)-(-6)=(-10)+6=-4
(3)-=+=1
2、课内练习:P.241、2、3
3、游戏:两人一组,用扑克牌做有理数减法运算游戏(每人27张牌,黑牌� 每人每次出一张牌,两人轮流先出(先出者为被减数),先求出这两张牌点数之差者获胜,直至其中一人手中�
四、总结反思
(1) 有理数减法法则:减去一个数,等于加上这个数的相反数。
(2) 有理数减法的步骤:先变为加法,再改变减数的符号,最后按有理数加法法则计算。
五、作业
P.27习题1.4A组1、2、5、6
备选题
填空:比2小-9的数是 。
а比а+2小 。
若а小于0,е是非负数,则2а-3е 0。
初中数学教案 17
教学建议
知识结构
重难点分析
本节的重点是的性质和判定定理。是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要学习的正方形的基础。
本节的难点是性质的灵活应用。由于是特殊的平行四边形,所以它不但具有平行四边形的性质,同时还具有自己独特的性质。如果得到一个平行四边形是,就可以得到许多关于边、角、对角线的条件,在实际解题中,应该应用哪些条件,怎样应用这些条件,常常让许多学生手足无措,教师在教学过程中应给予足够重视。
教法建议
根据本节内容的特点和与平行四边形的关系,建议教师在教学过程中注意以下问题:
1、的知识,学生在小学时接触过一些,可由小学学过的知识作为引入。
2、在现实中的实例较多,在讲解的性质和判定时,教师可自行准备或由学生准备一些生活实例来进行判别应用了哪些性质和判定,既增加了学生的参与感又巩固了所学的知识.
3、如果条件允许,教师在讲授这节内容前,可指导学生按照教材148页图4-33所示,制作一个平行四边形作为教学过程中的道具,既增强了学生的动手能力和参与感,有在教学中有切实的体例,使学生对知识的掌握更轻松些.
4、在对性质的讲解中,教师可将学生分成若干组,每个学生分别对事先准备后的图形进行边、角、对角线的测量,然后在组内进行整理、归纳.
5、由于和的性质定理证明比较简单,教师可引导学生分析思路,由学生来进行具体的证明.
6、在性质应用讲解中,为便于理解掌握,教师要注意题目的层次安排。
一、教学目标
1.掌握概念,知道与平行四边形的关系.
2.掌握的性质.
3.通过运用知识解决具体问题,提高分析能力和观察能力.
4.通过教具的演示培养学生的学习兴趣.
5.根据平行四边形与矩形、的从属关系,通过画图向学生渗透集合思想.
6.通过性质的学习,体会的图形美.
二、教法设计
观察分析讨论相结合的方法
三、重点·难点·疑点及解决办法
1.教学重点:的性质定理.
2.教学难点:把的性质和直角三角形的知识综合应用.
3.疑点:与矩形的性质的区别.
四、课时安排
1课时
五、教具学具准备
教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具
六、师生互动活动设计
教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨
七、教学步骤
【复习提问】
1.什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?
2.矩形中对角线与大边的夹角为,求小边所对的两条对角线的夹角.
3.矩形的一个角的平分线把较长的边分成、,求矩形的周长.
【引入新课】
我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,这时可将事先按课本中图4-38做成的一个短边也可以活动的教具进行演示,如图,改变平行四边形的边,使之一组邻进相等,引出概念.
【讲解新课】
1.定义:有一组邻边相等的平行四边形叫做.
讲解这个定义时,要抓住概念的本质,应突出两条:
(1)强调是平行四边形.
(2)一组邻边相等.
2.的性质:
教师强调,既然是特殊的平行四边形,因此它就具有平行四边形的一切性质,此外由于它比平行四边形多了“一组邻边相等”的条件,和矩形类似,也比平行四边形增加了一些特殊性质.
下面研究的性质:
师:同学们根据的定义结合图形猜一下有什么性质(让学生们讨论,并引导学生分别从边、角、对角线三个方面分析).
生:因为是有一组邻边相等的平行四边形,所以根据平行四边形对边相等的性质可以得到.
性质定理1:的四条边都相等.
由的四条边都相等,根据平行四边形对角线互相平分,可以得到
性质定理2:的对角线互相垂直并且每一条对角线平分一组对角.
引导学生完成定理的规范证明.
师:观察右图,被对角线分成的四个直角三角形有什么关系?
生:全等.
师:它们的底和高和两条对角线有什么关系?
生:分别是两条对角线的一半.
师:如果设的两条对角线分别为、,则的面积是什么?
生:
教师指出当不易求出对角线长时,就用平行四边形面积的一般计算方法计算面积.
例2已知:如右图,是△的角平分线,交于,交于.
求证:四边形是.
(引导学生用定义来判定.)
例3已知的边长为,,对角线,相交于点,如右图,求这个的对角线长和面积.
(1)按教材的方法求面积.
(2)还可以引导学生求出△一边上的高,即的高,然后用平行四边形的面积公式计算的面积.
【总结、扩展】
1.小结:(打出投影)(图4)
(1)、平行四边形、四边形的从属关系:
(2)性质:图5
①具有平行四边形的所有性质.
②特有性质:四条边相等;对角线互相垂直,且平分每一组对角.
八、布置作业
教材P158中6、7、8,P196中10
九、板书设计
标题
定义……
性质例2…… 小结:
性质定理1:……例3…… ……
性质定理2:……
十、随堂练习
教材P151中1、2、3
补充
1.的两条对角线长分别是3和4,则周长和面积分别是___________、___________.
2.周长为80,一对角线为20,则相邻两角的度数为___________、____________.
初中数学优秀教案 18
一、教材分析
本节内容是人民教育出版社出版《义务教育课程实验教科书(五四学制)数学》(供天津用)八年级下册第十章整式第一节整式加减第2小节整式的加减。
二、设计思想
本节内容是学生掌握了“整式”有关概念的延展学
八年级学生已具有了较强的数的运算技能和“合并”的意识(解一元一次方程中用)同时也具有初步的观察、归纳、探索的技能。因此,我结合教材,立足让每个学生都有发展的宗旨,我采用合作探究的学习方式开展教学活动,通过设计有针对性、多样式的问题引导学生,给学生提供充足的、和谐的探索空间让学生学习。通过学习活动不但培养学生化简意识,提升数学运算技能而且让学生深刻体会到数学是解决实际问题的重要工具,增强应用数学的意识。
三、教学目标:
(一)知识技能目标:
1、理解同类项的含义,并能辨别同类项。
2、掌握合并同类项的方法,熟练的合并同类项。
3、掌握整式加减运算的方法,熟练进行运算。
(二)过程方法目标:
1、通过探究同类项定义、合并同类项的方法的活动,培养学生观察、归纳、探究的能力。
2、通过合并同类项、整式加减运算的练习活动,提高学生运算技能,提升运算的准确率培养学生化简意识,发展学生的抽象概括能力。
3、通过研究引例、探究例1的活动,发展学生的形象思维,初步培养学生的符号感。
(三)情感价值目标:
1、通过交流协商、分组探究,培养学生合作交流的意识和敢于探索未知问题的精神。
2、通过学习活动培养学生科学、严谨的学习态度。
四、教学重、难点:
合并同类项
五、教学关键:
同类项的概念
六、教学准备:
教师:
1、筛选数学题目,精心设置问题情境。
2、制作大小不等的两个长方体纸盒实物模型,并能展开。
3、设计多媒体教学课件。(要凸显①单项式中系数、字母、指数的特征②长方体纸盒立体图、展开图。)
学生:
1、复习有关单项式的概念、有理数四则运算及去括号的法则)
2、每小组制作大小不等的两个长方体纸盒模型。
初中数学教案 19
一、检查反馈
本次检查大多数教师都比较重视,检查内容完整、全面。现将检查情况总结如下教案方面的特点与不足。
特点:
1、绝大多数教案设计完整,教学重点、难点突出,设置得当,紧紧围绕新课标,例如:刘兴华、孙菊、江文李雅芳等能突出对学科素养的高度关注。教师撰写的课后反思能体现教师对教材处理的新方法,能侧重对自己教法和学生学法的指导,并且还能对自己不得法的教学手段、方式、方法进行深刻地解剖,能很好地体现课堂教学的反思意识,反思深刻、务实、有针对性。
2、注重选择恰当的教学方法,注重在灵活多样的教学方法中培养学生的合作意识和创新精神。
3、教案能体现多媒体教学手段,注重培养学生的探究精神和创新能力。
不足:
1、教案后的教学反思不够认真、不够详细,没能对本堂课的得与失作出记录与小结,从中也可以看出我们对课后反思还不够重视。
2、个别教师教案过于简单。
作业方面的特点与不足
特点:
1、能按进度布置作业,作业设置量度适中,难易适中,上交率较高,且都能做到全批全改。
2、作业批改公平、公正,有一定的等级评定。教师批改要求严格、细致,能够反映学生作业中的错误做法及纠正措施。
3、学生在书写方面有很大进步。从检查可以发现教师对学生作业的书写格式有明确的要求。
不足:
1、对于学生书写的工整性,还需加强教育。
2、教师在批阅作业时,要稍细心些,发现问题就让学生当时改正,学生也就会逐渐养成做事认真的习惯。
初中数学教案 20
一、教材分析
幂函数是学生在系统学习了指数函数、对数函数之后研究的又一类基本初等函数。是对函数概念及性质的应用,能进一步培养利用函数的性质(定义域、值域、图像、奇偶性、单调性)研究一个函数的意识。因而本节课更是一个对学生研究函数的方法和能力的综合提升。从概念到图象( ),利用这五个函数的图象探究其定义域、值域、奇偶性、单调性、公共点,概括、归纳幂函数的性质,培养学生从特殊到一般再到特殊的一般认知规律。从教材的整体安排看,学习了解幂函数是为了让学生进一步获得比较系统的函数知识和研究函数的方法,以便能将该方法迁移到对其他函数的研究。
二、教学目标分析
依据课程标准,结合学生的认知发展水平和心理特征,确定本节课的教学目标如下:
[知识与技能] 使学生了解幂函数的定义,会画常见幂函数的图象,掌握幂函数的图象和性质,初步学会运用幂函数解决问题,进一步体会数形结合的思想。
[过程与方法] 引入、剖析、定义幂函数的过程,启动观察、分析、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法;通过运用多媒体的教学手段,引领学生主动探索幂函数性质,体会学习数学规律的方法,体验成功的乐趣;对幂函数的性质归纳、总结时培养学生抽象概括和识图能力;运用性质解决问题时,进一步强化数形结合思想。
[情感、态度与价值观] 通过生活实例引出幂函数概念,使学生体会生活中处处有数学,激发学生的学习兴趣。通过本节课的学习,使学生进一步加深研究函数的规律和方法;提高学生的学习能力;养成积极主动,勇于探索,不断创新的学习习惯和品质;树立学科学,爱科学,用科学的精神。
三、重、难点分析
[教学重点]
(1)幂函数的定义与性质;
(2)指数α的变化对幂函数y=xα(α∈R)的影响。从知识体系看,前面有指数函数与对数函数的学习,后面有其他函数的研究,本节课的学习具有承上启下的作用;就知识特点而言,蕴涵丰富的数学思想方法;就能力培养来说,通过学生对幂函数性质的归纳,可培养学生类比、归纳概括能力,运用数学语言交流表达的能力。
[教学难点]
(1)指数α的变化对幂函数y=xα(α∈R)性态的影响。
(2)数形结合解决大小比较以及求参数的问题。从学生认知发展看,他们具备一定的学习新函数的能力,可以通过学习指数函数与对数函数的方法来类比,但毕竟幂函数在三种初等函数中是最难的,因为它分类的情况很多,且性质多而复杂,我采用让学生自己利用计算机作出函数的图像,从中归纳性质的方法来突破难点。
四、学情与教法分析
1. 学情分析
从学生思维特点来和认知结构看,前面学生已经学习指数函数与对数函数,对新函数的学习已经有了一定的经验。一方面可以把本节课与前面的指数函数与对数函数进行类比学习,但另一方面本节课分类情况多,性质归纳困难,尤其是三个函数放在一起可能产生混淆。对进入高中半个学期的学生来说,虽然具备一定的分析和解决问题的能力,逻辑思维也初步形成,但缺乏冷静、深刻,思维具有片面性、不严谨的特点,对问题解决的一般性思维过程认识比较模糊。
2. 教法分析
学生思维活跃,求知欲强,但在思维习惯上还有待教师引导从学生原有的知识和能力出发,在教师的带领下创设疑问,通过合作交流,共同探索,逐步解决问题。采用引导发现式的教学方法,充分利用多媒体辅助教学。通过教师点拨,启发学生主动观察、主动思考、动手操作、自主探究来达到对知识的发现和接受。
3.教学构想
新课标的要求是通过实例,了解y=x,的图像,了解它们的变化情况。而原数学教学大纲要求掌握幂函数的概念及其图像和性质,在考查掌握函数性质和运用性质解决问题时,所涉及的幂函数f(x)=xα中 α限于在集合{-2,-1,-,1,2,3}中取值。新课标无论从内容的容量和难度上都要远低于旧课标。而苏教版的教材严格按照新课标要求处理此部分内容,内容体系均未超出课标要求。所以我们应以新课标为准绳,控制难度与要求。由于本节课的难点在于指数α的变化对幂函数y=xα(α∈R)性态的影响,本身幂函数比较抽象,所以我采用在多媒体教室让学生用Excel来模拟得到图象,再从图象上观察、归纳函数的性质。从心理学上讲,自己经历知识的发生发展过程,印象更深刻,学生容易接受与理解。